
http://www.tutorialspoint.com/sql/sql-quick-guide.htm Copyright © tutorialspoint.com

SQL - QUICK GUIDESQL - QUICK GUIDE

What is SQL?
SQL is Structured Query Language, which is a computer language for storing, manipulating and
retrieving data stored in relational database.

SQL is the standard language for Relation Database System. All relational database management
systems like MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL Server use SQL as
standard database language.

Also, they are using different dialects, such as:

MS SQL Server using T-SQL,

Oracle using PL/SQL,

MS Access version of SQL is called JET SQL nativeformat, etc

Why SQL?
Allows users to access data in relational database management systems.

Allows users to describe the data.

Allows users to define the data in database and manipulate that data.

Allows to embed within other languages using SQL modules, libraries & pre-compilers.

Allows users to create and drop databases and tables.

Allows users to create view, stored procedure, functions in a database.

Allows users to set permissions on tables, procedures, and views

What is RDBMS?
RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL and for
all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

A Relational database management system RDBMS is a database management system DBMS that
is based on the relational model as introduced by E. F. Codd.

What is table ?
The data in RDBMS is stored in database objects called tables. The table is a collection of related
data entries and it consists of columns and rows.

Remember, a table is the most common and simplest form of data storage in a relational
database.

What is field?
Every table is broken up into smaller entities called fields. The fields in the CUSTOMERS table
consist of ID, NAME, AGE, ADDRESS and SALARY.

A field is a column in a table that is designed to maintain specific information about every record
in the table.

What is record or row?
A record, also called a row of data, is each individual entry that exists in a table. For example,
there are 7 records in the above CUSTOMERS table.

http://www.tutorialspoint.com/sql/sql-quick-guide.htm
Ut1
Rettangolo



A record is a horizontal entity in a table.

What is column?
A column is a vertical entity in a table that contains all information associated with a specific field
in a table.

What is NULL value?
A NULL value in a table is a value in a field that appears to be blank which means A field with a
NULL value is a field with no value.

It is very important to understand that a NULL value is different than a zero value or a field that
contains spaces. A field with a NULL value is one that has been left blank during record creation.

SQL Constraints:
Constraints are the rules enforced on data columns on table. These are used to limit the type of
data that can go into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Column level constraints are applied only to one
column where as table level constraints are applied to the whole table.

SQL Syntax:
SQL is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a quick
start with SQL by listing all the basic SQL Syntax:

All the SQL statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE,
ALTER, DROP, CREATE, USE, SHOW and all the statements end with a semicolon ; .

Important point to be noted is that SQL is case insensitive which means SELECT and select have
same meaning in SQL statements but MySQL make difference in table names. So if you are
working with MySQL then you need to give table names as they exist in the database.

SQL SELECT Statement:

SELECT column1, column2....columnN
FROM   table_name;

SQL DISTINCT Clause:

SELECT DISTINCT column1, column2....columnN
FROM   table_name;

SQL WHERE Clause:

SELECT column1, column2....columnN
FROM   table_name
WHERE  CONDITION;

SQL AND/OR Clause:

SELECT column1, column2....columnN
FROM   table_name
WHERE  CONDITION-1 {AND|OR} CONDITION-2;

SQL IN Clause:

SELECT column1, column2....columnN
FROM   table_name
WHERE  column_name IN (val-1, val-2,...val-N);

Ut1
Rettangolo



SQL BETWEEN Clause:

SELECT column1, column2....columnN
FROM   table_name
WHERE  column_name BETWEEN val-1 AND val-2;

SQL Like Clause:

SELECT column1, column2....columnN
FROM   table_name
WHERE  column_name LIKE { PATTERN };

SQL ORDER BY Clause:

SELECT column1, column2....columnN
FROM   table_name
WHERE  CONDITION
ORDER BY column_name {ASC|DESC};

SQL GROUP BY Clause:

SELECT SUM(column_name)
FROM   table_name
WHERE  CONDITION
GROUP BY column_name;

SQL COUNT Clause:

SELECT COUNT(column_name)
FROM   table_name
WHERE  CONDITION;

SQL HAVING Clause:

SELECT SUM(column_name)
FROM   table_name
WHERE  CONDITION
GROUP BY column_name
HAVING (arithematic function condition);

SQL CREATE TABLE Statement:

CREATE TABLE table_name(
column1 datatype,
column2 datatype,
column3 datatype,
.....
columnN datatype,
PRIMARY KEY( one or more columns )
);

SQL DROP TABLE Statement:

DROP TABLE table_name;

SQL CREATE INDEX Statement :

CREATE UNIQUE INDEX index_name
ON table_name ( column1, column2,...columnN);

SQL DROP INDEX Statement :



ALTER TABLE table_name
DROP INDEX index_name;

SQL DESC Statement :

DESC table_name;

SQL TRUNCATE TABLE Statement:

TRUNCATE TABLE table_name;

SQL ALTER TABLE Statement:

ALTER TABLE table_name {ADD|DROP|MODIFY} column_name {data_ype};

SQL ALTER TABLE Statement Rename :

ALTER TABLE table_name RENAME TO new_table_name;

SQL INSERT INTO Statement:

INSERT INTO table_name( column1, column2....columnN)
VALUES ( value1, value2....valueN);

SQL UPDATE Statement:

UPDATE table_name
SET column1 = value1, column2 = value2....columnN=valueN
[ WHERE  CONDITION ];

SQL DELETE Statement:

DELETE FROM table_name
WHERE  {CONDITION};

SQL CREATE DATABASE Statement:

CREATE DATABASE database_name;

SQL DROP DATABASE Statement:

DROP DATABASE database_name;

SQL USE Statement:

USE DATABASE database_name;

SQL COMMIT Statement:

COMMIT;

SQL ROLLBACK Statement:

ROLLBACK;

SQL - Operators:
SQL Arithmetic Operators:



Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

+ Addition - Adds values on either side of
the operator

a + b will give 30

- Subtraction - Subtracts right hand
operand from left hand operand

a - b will give -10

* Multiplication - Multiplies values on either
side of the operator

a * b will give 200

/ Division - Divides left hand operand by
right hand operand

b / a will give 2

% Modulus - Divides left hand operand by
right hand operand and returns
remainder

b % a will give 0

SQL Comparison Operators:
Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

= Checks if the values of two operands are
equal or not, if yes then condition
becomes true.

a = b is not true.

!= Checks if the values of two operands are
equal or not, if values are not equal then
condition becomes true.

a! = b is true.

<> Checks if the values of two operands are
equal or not, if values are not equal then
condition becomes true.

a <> b is true.

> Checks if the value of left operand is
greater than the value of right operand, if
yes then condition becomes true.

a > b is not true.

< Checks if the value of left operand is less
than the value of right operand, if yes
then condition becomes true.

a < b is true.

>= Checks if the value of left operand is
greater than or equal to the value of right
operand, if yes then condition becomes
true.

a >= b is not true.

<= Checks if the value of left operand is less
than or equal to the value of right
operand, if yes then condition becomes
true.

a <= b is true.

!< Checks if the value of left operand is not a! < b is false.

/sql/sql-arithmetic-operators.htm
/sql/sql-comparison-operators.htm


less than the value of right operand, if yes
then condition becomes true.

!> Checks if the value of left operand is not
greater than the value of right operand, if
yes then condition becomes true.

a! > b is true.

SQL Logical Operators:
Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description

ALL The ALL operator is used to compare a value to all values in another value
set.

AND The AND operator allows the existence of multiple conditions in an SQL
statement's WHERE clause.

ANY The ANY operator is used to compare a value to any applicable value in the
list according to the condition.

BETWEEN The BETWEEN operator is used to search for values that are within a set of
values, given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a
specified table that meets certain criteria.

IN The IN operator is used to compare a value to a list of literal values that
have been specified.

LIKE The LIKE operator is used to compare a value to similar values using
wildcard operators.

NOT The NOT operator reverses the meaning of the logical operator with which it
is used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate
operator.

OR The OR operator is used to combine multiple conditions in an SQL
statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness
noduplicates.

SQL - Useful Functions:
SQL has many built-in functions for performing processing on string or numeric data. Following is
the list of all useful SQL built-in functions:

SQL COUNT Function - The SQL COUNT aggregate function is used to count the number of
rows in a database table.

SQL MAX Function - The SQL MAX aggregate function allows us to select the highest maximum
value for a certain column.

SQL MIN Function - The SQL MIN aggregate function allows us to select the lowest minimum
value for a certain column.

/sql/sql-logical-operators.htm
/sql/sql-count-function.htm
/sql/sql-max-function.htm
/sql/sql-min-function.htm


SQL AVG Function - The SQL AVG aggregate function selects the average value for certain
table column.

SQL SUM Function - The SQL SUM aggregate function allows selecting the total for a numeric
column.

SQL SQRT Functions - This is used to generate a square root of a given number.

SQL RAND Function - This is used to generate a random number using SQL command.

SQL CONCAT Function - This is used to concatenate any string inside any SQL command.

SQL Numeric Functions - Complete list of SQL functions required to manipulate numbers in
SQL.

SQL String Functions - Complete list of SQL functions required to manipulate strings in SQL.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

/sql/sql-avg-function.htm
/sql/sql-sum-function.htm
/sql/sql-sqrt-function.htm
/sql/sql-rand-function.htm
/sql/sql-concat-function.htm
/sql/sql-numeric-functions.htm
/sql/sql-string-functions.htm

